Faculty
Sonal S Tuli MD
Astra Dinculescu PhD
USH syndrome represents the most common genetic cause of combined deafness and blindness, with an estimated prevalence ranging from 4 to 17 cases per 100,000 people worldwide. It results in the progressive loss of the retinal photoreceptors in the eye and the auditory hair cells in the inner ear. Research conducted in our laboratory is mainly dedicated to developing therapeutic strategies for Usher syndrome type III (USH3), a disorder caused by mutations in the CLRN1 gene, leading to progressive hearing loss and retinal degeneration. The biological function of CLRN1 in the retina is currently not understood. Importantly, there are no therapeutic approaches that prevent the loss of light-sensitive photoreceptor neurons in USH3 patients. A major challenge hindering the development of treatments to prevent blindness in this disorder is the lack of models that mimic the human vision loss. For this reason, we are developing new models that will contribute greatly to the advancement of our understanding of this disorder, as well as our ability to treat it. Our goals are to understand the roles of CLRN1 protein in Müller glia and how its omission specifically impacts the postnatal and adult retina, in order to develop safe AAV-based gene-therapy tools for preventing blindness in USH3 patients.